
3 Design

3.1 Design Context

3.1.1 Broader Context

Our broad context is a situation where we have N job-sites, M workers, who each have their own skill
descriptions and respective locations. As we are crowdsourcing our workers will be assigned to these
job-sites based on various factors depending upon the work situation. We are targeting individual
consumers and service providers by our model. This application will increase competition in our
communities and thus provide better and more affordable services.

Below are a few areas and descriptions of how the project would have the ability to impact them.

Area Description Examples

Public health,
safety, and
welfare

Workers -
1. By increasing economic opportunity for
workers in the community, this will also
positively impact overall health and welfare,
as workers will be able to more comfortably
afford more of their expenses.
2. The workers who respond to the tasks
may take the risk of responding to malicious
users: i.e. users who “pretend” to have an
issue, but make a job request for another
(possibly malicious) reason.
Mitigating the amount of travel workers do
is also important, which would decrease the
likelihood of a traffic accident or other
travel-related issues.

Users -
1. Users should see health/safety increase
with the use of our solution, as users may
request jobs that, if left uncompleted, could
impact their physical or mental health and
welfare.
2. Similar to workers, users may take the risk
of “malicious” workers. These would be
workers who use the product and are in
some way negligent to the job they are
assigned. This would also have the same
effect if a user posts a job they need done
urgently, but the job is never completed by a
worker.

Workers -
1. A worker who previously struggled in
being able to find jobs is given more
opportunities (which results in increased
mental wellbeing for workers) as a direct
result of the algorithmic solution
implemented.
2. A malicious user uses the app to
request a job, but when the worker
arrives at the job site, neither the user
nor the job is anywhere to be found.
Another applicable example would be
requesting an Uber driver, but cancelling
last-minute, resulting in wasted time and
money for the worker.

Users -
1. A user posts a job request for a leaky
pipe which is quickly completed by a
worker. If left unattended, this pipe
could’ve caused harmful effects to the
user’s health.
2. A user makes a job request to fix a
leaky pipe that is assigned
(unintentionally) to a malicious or
negligent worker that doesn’t show up, or
does not complete the job. This could
result in not only damage to the user’s
plumbing and infrastructure, but also
health risk to the user due to mold if not
attended to in a timely manner.

Global,
cultural, and
social

It will help organize professional services
and their execution by professional workers
and help with the organization and

Development or operation of the
solution would violate a profession’s code
of ethics, implementation of the solution

transportation of those with similar social
desires.

would require an undesired change in
community practices

Environmenta
l

By dynamically optimizing routes of workers
the emissions from workers vehicles will be
reduced between jobs.

With algorithmically calculated
optimized routes for the workers, excess
car emission can be controlled helping
the environment.

Economic It enables more competition amongst
service providers which in turn can provide
more competitive pricing. More competition
also promotes better service and enables
more flexibility for the customers. The
proposed solution would also create more
jobs for workers in the community/area in
which it’s implemented.

If a customer insists on having his job
finished in a certain hour and is willing
to pay more, the system should enable
such assignments.

3.1.2 User Needs

Workers need to . . . :

1. be able to accept tasks to confirm for the users and crowdsourcing algorithm.
2. be able to get the location of the requested task to be able to arrive and accomplish the

task.
3. be able to post their location, skills and task status because both clients and the

crowdsourcing algorithm require this information.
4. be able to finish accepted tasks in a timely manner to ensure work done via the app is done

properly.
5. regularly monitor task schedules for any updates because of the dynamic nature of the

problem.
6. be able to file feedback/issues if any so it can be handled in a timely manner.

Client/Requesters need to . . . :

1. be able to post tasks so there are tasks to calculate assignments for, and so the application
can serve their needs.

2. be able see the status of assignment/workers in real time so they can stay up to date on the
status of their task.

3. be able to confirm the task completion to ensure the application provided them proper
services

4. be able to approve funding for the requested task so the algorithm can provide them with a
worker in their price range, and so the worker can receive payment.

5. be able to file feedback/issues if any so it can be handled in a timely manner.

Administration needs to . . . :

1. be able to assess new workers based on the given information to ensure proper sign up, and
qualified workers.

2. manage customer-worker conflicts and feedback so they can be handled in a timely
manner.

3. be able to issue incentives to workers based on their performance so that the application
can keep workers motivated, and draw in new users.

4. be able to build a customer appreciation strategy to boost business and user satisfaction.
5. be able to manage privacy protection to ensure all user data remains private.

3.1.3 Prior Work/Solutions

Detailed background information on the problem of dynamic spatial crowdsourcing, and programmatic
solutions, can be found in the “Destination-aware task
assignment in spatial crowdsourcing: A worker decomposition
approach” report. This report can be found in section 3.4.

In the modern day, there are actually many applications which
intend to solve the issue of spatial crowdsourcing for a specific
subgroup of tasks. A few prominent examples are rideshare
services such as Uber or Lyft, and food delivery services such as
DoorDash and Eat Street. These companies provide similar tools,
however they only handle location data; not worker skills / and
differing tasks. Due to this, these popular solutions actually lack
many of the criteria shown in figure 1, and cannot truly be
considered examples of solutions to our problem.

We may be able to draw information from these services such as
location assignment and UI designs, but we will need to make substantial changes in order to provide a
proper solution. With these changes in mind, the examples and information provided in the
“Destination-aware task assignment in spatial crowdsourcing” report will likely prove to be valuable to our
development process. This report includes notes on optimization, algorithms, and more general details that
need to be taken into consideration.

This advancement makes us stand out from any existing competition. Our service will take the concept that
has caused these apps to take the world by storm, and we will combine it with worker skills and tasks to
provide a general user solution to spatial crowdsourcing. Rather than simply having Geographical
Information System functionality with a basic simple task, we will have detailed functionality to provide
clients a way to get all services they may need in one convenient location. We will also subsequently attract
more workers, as we will serve more professions. Workers may also have a better experience on our services
than other popular services. This is due to the dynamic spatial crowdsourcing algorithm giving them their
optimal job rather than the worker needing to manually find and accept tasks.

3.1.4 Technical Complexity

From a technical side, our project has three main components: the frontend, backend and database.
Alongside these it will need to make use of at least one outside API as well, a location API. Our frontend will
be composed of two client types, a web browser and mobile, both of these will need to provide the
functionality for the user to provide information input to the backend and query the backend data for
general profile information, task assignments/updates and location data. Our mobile application will also
need to be able to provide location updates for workers to the backend.

1. The backend will need to store all of our data in the selected database. As this data changes it will
need to put data through the algorithm and update worker assignments. Part of processing the data
through this algorithm will require querying a location API.

2. The frontend will provide functionality to query the backend and provide task assignment updates
to workers. On the mobile application side of the front end the application will also need to be able
to provide location updates for user reference and also for algorithm usage.

3. Our current target is a more general purpose algorithm. While it is comparable to some existing
companies/solutions, like Uber or GrubHub, it is not equivalent, as our algorithm will be taking
multiple task types into consideration, as opposed to a single category. This adds an extra layer of
complexity to the problem with us having to take more than just spatiotemporal data into account.

Technical aspects that increase the complexity of the project:

● Our project will have three main technical interfaces
○ Backend to database, providing the algorithm with the data that it needs and writing to the

database.
○ Frontend to backend, providing user data for the database, location data, and updating

users and workers with task info.
○ Backend interfacing with a location api to assist with the spatial dependent portion of

assigning tasks.
● The frontend is not one singular component but will need to have components written for both web

and mobile.
● ReactJS and Spring Boot are new to some members of the team and will require knowledge

acquisition.

Internal complexity

Components and subsystems: Technique identification(processing and database),location services, dynamic
route optimization,

Scientific, mathematical, or engineering principles: Location detection,

External complexity

Our project has multiple functional requirements that will match or exceed current state-of-the-art
standards, such as: error recognition, dynamic location monitoring, task optimization, input processing, and
dynamic contingency handling.

3.2 Design Exploration

3.2.1 Design Decisions

Some key design decisions we have made regarding our proposed solution are as follows. Note these may be
subject to change with time or at client discretion:

1. Real-time tracking through google maps api
2. Front-end implementation using ReactJs
3. We will develop our mobile application using React Native
4. For our backend services, we will utilize the spring boot framework.
5. MySQL Db will be used for data storage, using tools such as postman and SQL workbench to run

tests.
6. The server provided to our development team will be used to host the application’s backend.

3.2.2 Ideation

For the backend implementation, we debated between mongodb(NoSQL) and mysql(relational). We settled
on MySQL db because it is a good balance of ease of use, proficiency, and easily accessible documentation.
This platform also has an active community and support teams that can be of assistance if appropriate
documentation cannot be found.

For the front-end implementation, we decided to go with ReactJs. We looked into other options such as
Angular, JavaScript, Vue.js, and Ember.js. Considering our team’s experience, ReactJs was chosen as the best
choice for our team. Also, ReactJs is easier to understand and execute than the latter options. One of the
cons of choosing Angular is the difficult debugging that it comes with, but we prioritized the performance
and efficiency of it.

As for general ideation techniques, these decisions were narrowed down using the information provided in
prior sections of this document. We balanced our development team’s skills with the needs we had
documented, and found the best compromises that suited both categories. Once we settled on a list of
possible languages and frameworks, tools such as the weighted decision matrix in the following section were
used to make the final decision.

3.2.3 Decision-Making and Trade-Off

Weighted Decision Matrix [Scale: 1-10] :

OPTIONS Personal
Preference

Industry
Standard

Developer
experience

Ease of
Use/learn

Ease of
Maintenance

Total

Criterion
Weight

20% 10% 25% 25% 20% 100%

ReactJs 9 8 9 10 8 8.95

Angular 6 8 7 9 9 7.8

Vue.js 7 7 8 10 8 8.2

Ember.js 1 3 0 3 5 2.25

As it is shown, ReactJs has the highest total point.

3.3 Proposed Design

There has not been implementation yet, project details have not yet been solidified to a point that we have
had the option to spend time on that.

3.3.1 Design Visual and Description

Figure 2 will be our reference point for the visual description of the design. Our design only includes
software components, as such we have a block diagram of the software components and have no further
breakdown of any physical elements.

The backend will be our central component taking input from the frontend and pulling data from the
database and location api to provide input to our task assignment algorithm. Once tasks are assigned,
clients and workers will be able to see tasks and relevant data with elements like worker location updated in
real-time and displayed to appropriate parties. The database will be mySQL written in Spring Boot and the
front end will be written in ReactJS. Connections between the different elements are labeled in figure 2 with
the functionality they will primarily be used for.

3.3.2 Functionality

Describe how your design is intended to operate in its user and/or real-world context. This description can
be supplemented by a visual, such as a timeline, storyboard, or sketch.

How well does the current design satisfy functional and non-functional requirements?

Functional requirements:

● The mobile and web app should be able to display status of assignment and worker in real-time

->React allows us to develop both mobile and web apps.

● Only appropriate users should be able to see the location/info of workers

->Give permission only to appropriate users.

● Interpret existing worker data to decide optimal routes and assignments

->With the GPS API, collect users’ location and use the algorithm to make an optimal decision.

● The applications should be scalable for multiple users

-> Ensure the scalability of the application by choosing the right technology and practices. Using
DevOps to manage the project and developing the application.

● Job requests are updated in real time

-> Workers are able to provide regular updates on the request through the UI.

● Workers must be able to post their availability and location

-> Workers are prompted to give their location when posting a job, with real-time data on the jobs
they're working.

● Application should calculate the optimal assignment of worker to task

-> Designing an algorithm for assigning the optimal assignment to the worker.

● Users should be able to view status of their requests in real-time

-> Updates made by the worker should be visible at the customer’s UI.

● Proper authentication for user accounts

-> Email and Phone Number Verification for all new user Accounts.

● Data storage and tracking of completed tasks

-> All user and assignment data is synchronously stored in the database.

● Optimized for fast response time

-> Ensure industry standard coding practices while using multi-threading for faster response time.

Non-functional requirements:

● Accessible from mobile devices and PC

-> Using React will allow us to develop for both mobile and desktop.

● Design should be extensible.

-> Practice clean code and proper documentation of each task assigned.

● Data should be stored safely and accurately, and its integrity shall be maintained across API hits

-> Store data in the database and use a queue pattern in order not to lose the data.

● Clean and best practice code to improve future maintainability

-> Evaluate team members' performance every other week to ensure all the best practices are being
followed.

● Application should be functioning reliably

-> Protects the integrity, availability, and confidentiality of the application and it’s users. Also,
prepare an emergency plan in case there’s a breach.

● Privacy and security of workers

-> Constant testing of our application/code will allow us to find and avoid any data leaks. Use of 2
factor authentication at user login.

● Intuitive and “clean” web and mobile UI

-> Make sure we consult our group with every UI change to prevent clusters in the UI.

3.3.3 Areas of Concern and Development

Based on your current design, what are your primary concerns for delivering a product/system that
addresses requirements and meets user and client needs?

What are your immediate plans for developing the solution to address those concerns? What questions do
you have for clients, TAs, and faculty advisers?

Concerns:

● Making the application scalable, i.e. adding multiple users and workers over time.
● Making sure that the application is easy to navigate for new users.
● Making the real time location of workers as precise as possible.
● Smooth integration of all the components of the application.
● Making sure the app is optimized for fast response times.
● Making sure the user’s information is secure.

Addressing the concerns:

Team will follow a clean coding principle for a smooth integration and merge their code from time to time.
As none of the team members has major experience with developing real time applications, we will consult
the faculty on ways to mitigate delay within the application. In order to optimize our app for fast response
times, we plan to only implement the necessary functions first in order to prevent overcrowding of
unnecessary functionalities. Will try to get as much user feedback as possible, on the UI and new user
navigation.

3.4 Resources Referenced

Zhao, Y. et. all (2019, June 12). Destination-aware task assignment in spatial crowdsourcing: A worker
decomposition approach. IEEE Xplore. Retrieved September 22, 2021, accessed from
https://ieeexplore.ieee.org/document/8735884.

